7 research outputs found

    On solving systems of random linear disequations

    Get PDF
    An important subcase of the hidden subgroup problem is equivalent to the shift problem over abelian groups. An efficient solution to the latter problem would serve as a building block of quantum hidden subgroup algorithms over solvable groups. The main idea of a promising approach to the shift problem is reduction to solving systems of certain random disequations in finite abelian groups. The random disequations are actually generalizations of linear functions distributed nearly uniformly over those not containing a specific group element in the kernel. In this paper we give an algorithm which finds the solutions of a system of N random linear disequations in an abelian p-group A in time polynomial in N, where N=(log|A|)^{O(q)}, and q is the exponent of A.Comment: 13 page

    Efficient quantum algorithms for some instances of the non-Abelian hidden subgroup problem

    Get PDF
    In this paper we show that certain special cases of the hidden subgroup problem can be solved in polynomial time by a quantum algorithm. These special cases involve finding hidden normal subgroups of solvable groups and permutation groups, finding hidden subgroups of groups with small commutator subgroup and of groups admitting an elementary Abelian normal 2-subgroup of small index or with cyclic factor group.Comment: 10 page

    On the black-box complexity of Sperner's Lemma

    Full text link
    We present several results on the complexity of various forms of Sperner's Lemma in the black-box model of computing. We give a deterministic algorithm for Sperner problems over pseudo-manifolds of arbitrary dimension. The query complexity of our algorithm is linear in the separation number of the skeleton graph of the manifold and the size of its boundary. As a corollary we get an O(n)O(\sqrt{n}) deterministic query algorithm for the black-box version of the problem {\bf 2D-SPERNER}, a well studied member of Papadimitriou's complexity class PPAD. This upper bound matches the Ω(n)\Omega(\sqrt{n}) deterministic lower bound of Crescenzi and Silvestri. The tightness of this bound was not known before. In another result we prove for the same problem an Ω(n4)\Omega(\sqrt[4]{n}) lower bound for its probabilistic, and an Ω(n8)\Omega(\sqrt[8]{n}) lower bound for its quantum query complexity, showing that all these measures are polynomially related.Comment: 16 pages with 1 figur

    An exact quantum hidden subgroup algorithm and applications to solvable groups

    Get PDF
    We present a polynomial time exact quantum algorithm for the hidden subgroup problem in ZmknZ_{m^k}^n. The algorithm uses the quantum Fourier transform modulo m and does not require factorization of m. For smooth m, i.e., when the prime factors of m are of size poly(log m), the quantum Fourier transform can be exactly computed using the method discovered independently by Cleve and Coppersmith, while for general m, the algorithm of Mosca and Zalka is available. Even for m=3 and k=1 our result appears to be new. We also present applications to compute the structure of abelian and solvable groups whose order has the same (but possibly unknown) prime factors as m. The applications for solvable groups also rely on an exact version of a technique proposed by Watrous for computing the uniform superposition of elements of subgroups.Comment: Further minor changes and corrections, further new reference

    Discrete logarithm and Diffie-Hellman problems in identity black-box groups

    No full text
    We investigate the computational complexity of the discrete logarithm, the computational Diffie-Hellman and the decisional Diffie-Hellman problems in some identity black-box groups G_{p,t}, where p is a prime number and t is a positive integer. These are defined as quotient groups of vector space Z_p^{t+1} by a hyperplane H given through an identity oracle. While in general black-box groups with unique encoding these computational problems are classically all hard and quantumly all easy, we find that in the groups G_{p,t} the situation is more contrasted. We prove that while there is a polynomial time probabilistic algorithm to solve the decisional Diffie-Hellman problem in Gp,1G_{p,1}, the probabilistic query complexity of all the other problems is Omega(p), and their quantum query complexity is Omega(sqrt(p)). Our results therefore provide a new example of a group where the computational and the decisional Diffie-Hellman problems have widely different complexity

    Discrete logarithm and Diffie-Hellman problems in identity black-box groups

    No full text
    We investigate the computational complexity of the discrete logarithm, the computational Diffie-Hellman and the decisional Diffie-Hellman problems in some identity black-box groups G_{p,t}, where p is a prime number and t is a positive integer. These are defined as quotient groups of vector space Z_p^{t+1} by a hyperplane H given through an identity oracle. While in general black-box groups with unique encoding these computational problems are classically all hard and quantumly all easy, we find that in the groups G_{p,t} the situation is more contrasted. We prove that while there is a polynomial time probabilistic algorithm to solve the decisional Diffie-Hellman problem in Gp,1G_{p,1}, the probabilistic query complexity of all the other problems is Omega(p), and their quantum query complexity is Omega(sqrt(p)). Our results therefore provide a new example of a group where the computational and the decisional Diffie-Hellman problems have widely different complexity
    corecore